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Using an improved static and dynamic light-scattering technique, we have observed multiscale relaxation of
the pretransitional fluctuations in the isotropic phase of a cromolyn aqueous solution, a lyotropic liquid crystal
where rods are formed by aggregates of disklike molecules. We have detected the onset of cromolyn aggre-
gation about 12 °C above the transition temperature. The onset is manifested by the emergence of strong
scattering due to the fluctuations of local anisotropy and by the split of the diffusion dynamics into two
distinctly different modes, one associated with the relatively fast diffusion of monomer-size particles and the
other one with the much slower diffusion of the cromolyn aggregates. A third observed dynamic mode is
associated with the pretransitional slowing down of fluctuations of the local anisotropy. This mode behaves
differently in polarized and depolarized light scattering, due to a coupling between fluctuations of the local-
anisotropy and velocity fluctuations.
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I. INTRODUCTION

A few years ago, Nastishin et al. �1� reported interesting
results of a light-scattering study of pretransitional fluctua-
tions in the isotropic phase of an aqueous solution of crom-
olyn �disodium cromoglycate�, a lyotropic mesogen of disk-
like molecules which form elongated rods �aggregates� in
aqueous solutions �see Refs. �2,3� and other relevant publi-
cations cited by Nastishin et al. �1��. The �-� interaction
between the aromatic rings of the cromolyn molecules is
considered a major driving force for the molecular face-to-
face stacking. Upon cooling, such a solution separates into
two phases, liquid crystalline and isotropic, undergoing a
weakly first-order transition to the liquid crystalline phase.
Depending on the cromolyn concentration, the liquid crystal-
line phase is either uniaxial nematic or columnar. Nastishin
et al. �1� studied a cromolyn solution near the transition to
the nematic phase. Above the transition temperature, TNI, the
homogeneous isotropic phase exhibits pronounced pretransi-
tional fluctuations of the local anisotropy. By combining
light-scattering and viscosity measurements, Nastishin et al.
obtained the correlation length and average relaxation time
of the local-anisotropy fluctuations and made an order-of-
magnitude estimate of the cromolyn aggregate size. It was
also speculated that the dramatic increase in the shear vis-
cosity near the isotropic-nematic transition, observed in this
system, is caused by elongation of the cromolyn aggregates
upon cooling.

However, two important issues, which are of broader in-
terest, remained unresolved. First, the mechanism of aggre-
gation in lyotropic chromonic liquid crystals is still an open
question. The possibility of characterizing the aggregation

mechanism with dynamic light scattering as a function of
temperature was not explored because the temperature range
of the previous experiments was too narrow. Second, the
previous study did not address a possible coupling between
dynamic modes in this complex system. The signal/noise ra-
tio of the measurements was not sufficient to make any de-
finitive statements. Instead, Nastishin et al. �1� concluded
that “further experimental studies of an expected coupling…
are highly desirable.”

The geometry of the cromolyn aggregates is very different
from micelles, spherical or cylindrical, formed by am-
phiphilic �surfactant� molecules in regular lyotropic liquid
crystals �2–4�. Structural x-ray data �5� suggest that cro-
molyn molecules in solution are arranged in cylindrical ag-
gregates with the disks being predominately perpendicular to
the axis of the cylinder. The intermolecular separation is
about 0.34 nm along the aggregate axis, while the estimated
cylinder diameter is about 2 nm. In contrast to closed mi-
celles, the chromonic aggregates do not have a geometrically
defined size, as there are no restrictions to adding another
molecule to the existing stack. Therefore, at constant tem-
perature the length of cromolyn aggregates is believed to
increase continuously with increasing concentration. Such
aggregation, also observed in studies of nucleic acid bases
and nucleosides, is called “isodesmic” �2,3,6�. A Monte
Carlo simulation of a model solution of chromonic and water
“molecules” supports the mechanism of isodesmic aggrega-
tion �7�. Although there is no optimum length of the aggre-
gation number with respect of the variation in chromonic
concentration, at any given concentration the chromonic sys-
tem is characterized by the average aggregation number that
increases with increase in the concentration. A recent study
of the absorption spectrum due to aggregation in a
chromonic liquid crystal, the “Bordeaux dye,” nicely de-
scribes the results with a simple model of isodesmic aggre-*Corresponding author; anisimov@umd.edu
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gation �6�. The tendency of the cromolyn molecules to ag-
gregate was observed even in very dilute solutions �8�, so
that the chromonics were not believed to show a distinct
threshold concentration, unlike the critical micelle concentra-
tion in amphiphilic systems �4�. However, in spite of the
fundamental difference between the mechanisms of isodes-
mic aggregation and micellization, a recent NMR study of
cromolyn in a phosphate buffer �9� indicated a sharp increase
in the chemical shift at about 1 mass % of cromolyn, tempt-
ing the authors to controversially speak about the “critical
self-association concentration” in the cromolyn solution. The
chemical shift continued growing at higher concentrations,
but much more gradually.

Moreover, effects of temperature on the mechanism of
chromonic aggregation have not been investigated. Micellar
�amphiphilic� systems, in addition to the critical micelle con-
centration threshold, commonly exhibit a temperature thresh-
old for micellization, the “critical micellization temperature”
�10,11�. After crossing the critical micellization temperature
at constant concentration, the number of micelles grows at
the expense of the monomers, while the average size of an
individual micelle may not significantly change. A question
arises whether the stacking of cromolyn molecules into ag-
gregates may exhibit a temperature threshold �a “critical self-
association temperature” analogous to the critical micelliza-
tion temperature of amphiphilic molecules� and whether
there are any effects of temperature on the size of the aggre-
gates.

In this study we try to clarify the effects of temperature on
the nature of self-assembly in the cromolyn solution with
static and dynamic light scattering. In isotropic solutions,
light is scattered due to the thermal fluctuations of density,
concentration, and local anisotropy. The local anisotropy is
associated with mutual orientations of anisotropic molecules
or supramolecular aggregates. In the vicinity of the isotropic-
nematic phase transition, the local anisotropy is character-
ized by the local nematic order parameter Qij �tensor of an-
isotropy �12–15��. The nematic order-parameter is a
nonconserved variable. In the isotropic phase, where the av-
erage value of the order parameter �Qij� is zero, uncoupled
fluctuations of the order parameter, �Qij, relax according to
the simple relaxation dynamics �16�,

���Qij�
�t

= −
�Qij

�
, �1�

where t is time, and � is the characteristic relaxation time
�decay time� given by

� = �̃� , �2�

where �̃ is a “rotational viscosity” and � is the susceptibility
with respect to the fluctuations of the nematic order param-
eter �14,17,18�. In principle, �̃, which controls the relaxation
of anisotropy fluctuations, is different from the shear viscos-
ity of the solution �, which controls the relaxation of veloc-
ity fluctuations. However, in many studies, these two friction
coefficients are found to exhibit similar temperature depen-
dences �14�. Although the equality is not guaranteed for all
systems, our first approach, which can only be justified by

comparison to experimental data, is to neglect any difference
between them, whence �̃��. The three properties, �R, �,
and �, can be independently measured in the cromolyn solu-
tion with dynamic light scattering, a rheometer, and static
light scattering, respectively �1�. Since Qij is a nonconserved
variable, the inverse relaxation time �−1 does not go to zero
with the light-scattering wave number q= �4�n /��sin�� /2�,
where n is the refractive index, � the wavelength of the
incident light, and � the scattering angle. However, � does
depend on q, through the susceptibility �, which in general
depends on q. The wave-number dependence of � becomes
significant when the correlation length � of the order-
parameter fluctuations becomes comparable with q−1. This
happens close to a relevant second-order phase transition,
where the susceptibility, as a function of the wave number,
can be represented by the Ornstein-Zernike approximation
�19�,

� �
�0

1 + �2q2 , �3�

where �0, the susceptibility in the “thermodynamic limit,”
can be obtained experimentally by extrapolating the corre-
sponding intensity of light scattering, which is proportional
to the susceptibility, to q=0. In the isotropic phase of a liquid
crystal, �, in Eq. �3�, is an effective correlation length result-
ing from two elastic terms in the Landau–de Gennes expan-
sion of the free energy �20�.

The concentration is a conserved variable. Uncoupled
concentration fluctuations in a binary fluid, �c, relax in ac-
cordance with the diffusion dynamics �21�,

���c�
�t

= −
�c

�D
, �4�

with the explicitly q-dependent relaxation time,

�D =
1

Dq2 , �5�

where D is the mutual diffusion coefficient. Therefore, the
diffusion mode can be made arbitrarily slow by probing it at
small enough values of q. In the previous study of Nastishin
et al. �1�, only a single diffusion mode was observed in the
polarized light scattering. This mode was characterized with
the diffusion dynamics of Eq. �4�, and was interpreted as
corresponding to the relaxation of concentration fluctuations
of the cromolyn aggregates.

In this paper we present three results of a cromolyn study,
with an improved light-scattering technique, to clarify the
nature of the aggregation phenomena and the dynamic cou-
pling of hydrodynamic modes. In the static light scattering
we have observed the sudden onset of cromolyn aggregation
below �45 °C in 14% �mass� cromolyn solution. By more
accurately separating the dynamic modes, which originate
from the fluctuations of concentration and from the fluctua-
tions of local anisotropy, we have observed three character-
istic relaxation processes. We have observed two diffusion
modes, “fast” and “slow,” which are attributed to the diffu-
sion of monomer-size particles and cromolyn aggregates, re-
spectively. The diffusion coefficients of these two modes dif-
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fer by an order of magnitude. Upon cooling, these two
dynamic modes are observed to emerge from a single �fast�
dynamic mode at about 44–46 °C corresponding to the on-
set of aggregation. The slow-diffusion mode does not signifi-
cantly change between �40° and the transition temperature
of 32.7 °C, suggesting a stable average size of the cromolyn
aggregates upon cooling. The third dynamic mode, associ-
ated with the relaxation of fluctuations in local anisotropy, is
found to behave differently in the polarized and depolarized
light scattering. In the polarized light-scattering alignment,
the relaxation is described by uncoupled dynamics described
by Eq. �1�. In the depolarized light-scattering alignment, the
experimental autocorrelation functions exhibit a strong q de-
pendence, which is inconsistent with the simple relaxation
dynamics of Eq. �1�. This dependence can be quantitatively
described by a theory �14,22� which accounts for a coupling
between the fluctuations of local anisotropy and velocity
fluctuations.

II. EXPERIMENTAL PROCEDURE

We have investigated the same sample of 14% �mass�
cromolyn aqueous solution as was studied by Nastishin et al.
�1�. The temperature of the transition to the nematic phase,
TNI, is found to be 32.7 °C, 0.9 °C higher than was reported
four years ago. Although the optical cell was carefully
sealed, the possibility of some subtle evaporation of water
during the four-year period might explain the small
transition-temperature shift. According to the phase diagram
�23�, a slight change in the cromolyn concentration from
14% to 14.2% would increase the transition temperature by
about 1 °C. We have detected neither dust nor erosion of the
glass surface of the cell.

The measurements have been performed with a custom-
made PhotoCor spectrometer at 11 different scattering
angles, from �=15° to �=150° with two settings of the ana-
lyzer: VV and VH; V and H denote vertical and horizontal
polarizations of the incident and scattered light, respectively.
We have significantly improved the resolution of the light-
scattering instrument previously used to study pretransitional
and critical fluctuations in aqueous and polymer solutions
�1,24–27�. A new photon counting system with two photo-
multipliers, allows for cross correlations of two separate sig-
nals, which eliminates after-pulses and greatly increases the
precision of the measurements of fast correlation times. For
comparison and better confidence, the correlation functions
were acquired with a PhotoCor-FC correlator and with an
ALV-5000/E correlator. Analysis of the correlation functions
was performed using both ALV-5000 and DYNALS �Alango/
PhotoCor� software. We have also increased accumulation
times �up to 1 h� and allowed for longer equilibration times
between the temperature steps. The new measurements,
taken over an extended temperature range, enabled us to de-
tect the onset of cromolyn aggregation at about 45 °C.

Additionally, we made control measurements of static and
dynamics light-scattering with a different experimental setup
at a single temperature close to the phase transition. The
optical cell in the alternative setup was submerged in an
immersion liquid �decaline� that matches the refractive index

of the optical glass with the surroundings to avoid stray light,
thus making the angular measurements of light scattering
more precise and reliable.

III. STATICS DATA ANALYSIS

An example of our new measurements of the intensity of
light scattering as a function of temperature in the isotropic
phase of the cromolyn solution is shown in Fig. 1. The open
circles indicate experimental data for the inverse intensity for
the VV alignment �IVV

−1 � at �=30°. The total intensity IVV
includes both an anisotropic contribution �IVV�an, due to fluc-
tuations of the local anisotropy, and an isotropic contribution
�IVV�iso, due to concentration fluctuations of molecules and
aggregates. The inverse intensity of the depolarized scatter-
ing �IVH

−1 �, shown by squares, is only associated with fluctua-
tions of the local anisotropy. The method of separating the
anisotropic and isotropic light scattering in the VV alignment
by using the experimental data for the depolarization ratio
�IVH / IVV� is explained by Nastishin et al. �1�.

It was also shown in Ref. �1� that, while �IVV�iso does not
change much near the transition temperature TNI, the inten-
sity �IVV�an greatly increases and becomes proportional to the
nematic �orientational� susceptibility. This susceptibility, the
measure of the pretransitional nematic fluctuations, is de-
scribed by Eq. �3�. In the limit q→0 the susceptibility di-
verges at the temperature of the absolute stability limit of the
isotropic phase T� �14�. In accordance with the Landau–de
Gennes theory �14�, the nematic susceptibility in the isotro-
pic phase, in the limit q→0, is

�0 =
l0
3

kB�T − T��
. �6�

In Eq. �6� kB is Boltzmann’s constant and l0 is a characteris-
tic length scale of the anisotropic molecules or anisotropic

FIG. 1. Inverse intensity at the scattering angle �=30° in the
isotropic phase of the cromolyn solution as a function of tempera-
ture. The circles are experimental data for the vertically polarized
light scattering �IVV

−1 � and the squares are for the depolarized light
scattering �IVH

−1 �. The dashed line shows the linear extrapolation
which corresponds to the Landau–de Gennes behavior for the in-
verse nematic susceptibility �0

−1,as given by Eq. �6�, valid below
35 °C. The Ornstein-Zernike correction given by Eq. �3� is too
small to be seen in the graph. The temperature T��30 °C is the
absolute stability limit of the isotropic phase, TNI�32.7 °C is the
temperature of the isotropic-nematic transition.
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supramolecular aggregates. Both IVV
−1 and �IVV�an

−1 vanish, in
the limit q→0, at the same temperature T�. Therefore, the
value of T� can be obtained by an extrapolation to q=0, as
demonstrated in Fig. 1. However, since TNI−T��10−2TNI is
not a small temperature difference with respect to the range
of the apparently linear behavior of �IVV

−1 �, the linear extrapo-
lation procedure is not very precise. Extrapolations of the
intensity data obtained at different angles and for the differ-
ent polarizations yield values of T� varying from 29.4 °C
�the value reported by Nastishin et al. �1�� to 30.5 °C. For
this particular system we adopt the value of T�=30 °C.

We have checked the wave-number dependence of the
anisotropic light scattering for both VV and VH alignments
of light scattering by using the alternative setup �with immer-
sion� and confirmed that the pretransitional susceptibility in-
deed follows Eq. �3� as shown in Fig. 2. We have also con-
firmed the result, reported earlier by Nastishin et al. �1�, that
the correlation length of the pretransitional nematic fluctua-
tions follows the Landau–de Gennes power law,

� � �0	T − T�

T

−1/2

	 �0
1/2 �7�

with �0�2 nm �close to the expected “diameter” of the
rods� and T��303 K��30 °C�. The measured correlation
length is the same, within our experimental resolution, in the
VH and VV alignments.

Both VV and VH intensity data clearly show a crossover
from poor molecular light scattering above 45 °C to over-
whelmingly “anisotropic” light scattering below 35 °C, with
the intensity being proportional to the Landau–de Gennes
susceptibility. In particular, this crossover unambiguously
explains why the range of the validity of the Landau–de
Gennes linear law in the cromolyn solution is so narrow.

As demonstrated in Fig. 3, the complex temperature de-
pendence of the VV intensity can be separated into three
parts. Above 45 °C the intensity is very low and is a weak
function of temperature. We associate this part with the scat-
tering by concentration fluctuations of monomer-size par-
ticles, such as cromolyn monomers or dimers and water mol-
ecules. The sharp increase in the intensity of light scattering

below 45 °C signals the “onset” of cromolyn aggregation
and indicates a relatively sharp transition from the molecular
scattering to the scattering associated with the existence of
anisotropic supramolecular aggregates. Between 42 and
36 °C the intensity increases nearly linearly with decreasing
temperature, similar to the linear dependence observed by
Bohorquez et al. �10� and Wu et al. �11� beyond a
temperature-induced micellization threshold �at constant
overall concentration� in nonionic amphiphilic copolymers.
We can define a characteristic aggregation temperature TA
�44 °C at the intersection of lines 2 and 3 in Fig. 3. This is
similar to the conventional definition of the critical micelli-
zation temperature �10,11�. The characteristic aggregation
temperature corresponds to the inflection point of the inverse
intensity shown in Fig. 1. Finally, below �35 °C and down
to the phase transition, the light scattering is mostly associ-
ated with near-critical fluctuations of local anisotropy and the
temperature dependence of the intensity is well described by
the Landau–de Gennes theory. The existence of the sudden
onset of self-assembly in the cromolyn solution is also
strongly supported by our new dynamic light-scattering mea-
surements �as discussed in Sec. IV�, which clearly show the
emergence of a slow-diffusion mode �attributed to the diffu-
sion of the cromolyn aggregates� upon cooling at about the
same temperature of 45 °C.

The temperature dependence of the light-scattering inten-
sity, shown in Figs. 1 and 3, cannot alone answer the ques-
tion of whether the cromolyn aggregates continue to grow
upon cooling or whether their average size remains stable.
As compared with the viscosity of the solvent �water�, the
viscosity of the cromolyn aqueous solution demonstrates an
anomalous growth �more than ten times� in a short tempera-
ture range of 8 °C �1�. Since such an anomaly does not
usually exist in the isotropic phase of thermotropic nematics
�17,18�, Nastishin et al. �1� attributed this effect to the fur-
ther elongation of supramolecular cromolyn aggregates when

FIG. 2. An Ornstein-Zernike plot of the inverse intensity of the
anisotropic scattering, obtained with the decaline immersion, in the
isotropic phase of the cromolyn solution at 33.65 °C as a function
the wave number.

FIG. 3. The light-scattering intensity data for the vertically po-
larized light scattering �IVV� at the scattering angle �=30° in the
isotropic phase of the cromolyn solution as a function of tempera-
ture. Three characteristic types of behavior are shown by the lines.
Type 1 is the pretransitional scattering caused by near-critical fluc-
tuations of local anisotropy �asymptotic Landau–de Gennes behav-
ior�; type 2 is the weakly temperature-dependent “molecular” scat-
tering; and type 3 is the linear temperature dependence of the
intensity, proportional to the number of the aggregates growing lin-
early with the temperature distance from TA�44 °C.
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the temperature decreases. However, the new dynamic data
show that the average length of the aggregates saturates at
about 40 °C and remains stable upon further cooling.

IV. DYNAMICS DATA ANALYSIS

A. Depolarized light scattering

In complex solutions of anisotropic scatterers, the analysis
of the relaxation dynamics is complicated by the presence of
multiple dynamic modes, especially in the VV alignment,
where both isotropic and anisotropic scattering contribute to
the dynamic intensity-autocorrelation functions �29–33�. For
this reason, we first consider the data from the VH align-
ment, where isotropic scattering is not present. The VH re-
sults are subsequently used to clarify and interpret the VV
results.

Eight examples of the experimental intensity-
autocorrelation functions obtained in the VH alignment are
shown in Fig. 4. The decay times of the correlation functions
clearly exhibit the expected critical slowing down upon cool-
ing. However, the dependence of the relaxation time on the
scattering angle is inconsistent with the uncoupled dynamics
described by Eq. �1�. Although some angular dependence of
the decay times is expected to originate from the Ornstein-
Zernike susceptibility given by Eq. �3�, this should lead to a
decrease in the relaxation time with increasing scattering
angle, not the increase seen in Fig. 4.

The analysis of the experimental correlation functions
presented in Fig. 4 has shown that the functions do not decay
as single exponentials. However, the correlation functions for
all of the angles studied are well fit to stretched exponentials
as

g2�t� − 1 = exp�− 2	 t

�eff


� . �8�

The fits are shown in Fig. 4 by the solid curves. Figure 5
presents the effective relaxation times �eff, as functions of
temperature, obtained from the single stretched exponential

fits at five angles. The effective relaxation times are seen to
increase monotonically with increasing scattering angle at all
temperatures, in contradiction to the expected Ornstein-
Zernike behavior. The effective stretching parameter 
,
shown as an inset in Fig. 5, demonstrates only a weak tem-
perature dependence, varying from 0.4 �far from the transi-
tion� to 0.6 �close to the transition� and is almost independent
of the scattering angle. These values are similar to those
reported for high-molecular-weight polymer solutions
�24,34� and for other solutions of disklike lyomesogens �28�.

To explain the seemingly unusual q dependence of the
dynamic correlation function in the VH alignment we con-
sider a possible coupling between hydrodynamics modes, an
effect not included in the simple relaxation dynamics of Eq.
�1�. We note that, in general, the normalized dynamic
intensity-autocorrelation function of the fluctuations of an-
isotropy for depolarized light scattering is given by �29�,

g2�t� − 1 	 ���Qxy
� �Qxy�t��sin2	�

2



+ ��Qyz
� �Qyz�t��cos2	�

2

�2

, �9�

where t is time. This expression results from a choice of
scattering geometry in which the incident beam propagates
in the xz plane, polarized in the y direction, with wave vector
ki, the scattered beam propagates in the xz plane, polarized in
the xz plane, with wave vector k f, and the scattering geom-
etry is selected such that the scattering vector q
ki−k f
points in the negative z direction, i.e., q=−qẑ. For the un-
coupled relaxation dynamics described by Eq. �1�, the two
correlation functions, ��Qxy

� �Qxy�t�� and ��Qyz
� �Qyz�t�� are

identical. In this case, the sin2� �
2 � and cos2� �

2 � add to unity
and do not contribute to the q dependence of g2�t�−1. How-
ever, if the two correlation functions in Eq. �9� decay with
different characteristic relaxation times, sin2� �

2 � and cos2� �
2 �

will contribute to the q dependence of g2�t�−1. In fact, Eq.
�9� implies that the effective relaxation time of g2�t�−1 will
increase with scattering angle, the effect seen in Fig. 5, if
��Qxy

� �Qxy�t�� decays more slowly than ��Qyz
� �Qyz�t��.

FIG. 4. Examples of the normalized dynamic intensity-
autocorrelation functions g2�t�−1 at �=15° �a� and �=150° �b� for
depolarized light scattering at temperatures between 36.2 and
33.3 °C. Two sets of data between these two limits correspond to
the temperatures 34 and 35 °C. The curves are obtained from fits of
the correlation functions to stretched exponentials as given by Eq.
�8�.

FIG. 5. The temperature dependences of the effective decay
times of the anisotropy fluctuations in the cromolyn solution ob-
tained for the depolarized light scattering at different scattering
angles from fits to Eq. �8�. The inset shows the temperature depen-
dence of the stretching parameter 
.
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The preceding discussion suggests that the experimental
correlation functions can be fit by Eq. �9� with the correlation
functions represented by stretched exponentials, yielding

g2�t� − 1 = �exp�− 	 t

�xy


xy�sin2	�

2



+ exp�− 	 t

�yz


yz�cos2	�

2

�2

. �10�

We have fit all the experimental correlation functions from
the depolarized scattering to Eq. �10�. An example of the
fitting procedure is presented in Fig. 6. The solid curves in
Fig. 6 were first obtained by fitting the correlation functions
for 15° and 150° in order to extract �xy, �yz, and the stretch-
ing parameters 
xy and 
yz. All of the solid curves, corre-
sponding to intermediate angles, were then predicted with
use of the parameters extracted for 15° and 150° and the
Ornstein-Zernike correction � /�q=0= �1+�2q2�−1. In Fig. 6
the correlation functions and corresponding fits are given
arbitrary normalizations to clearly separate the data from dif-
ferent scattering angles. The same level of agreement with
Eq. �10� is seen for all temperatures. This indicates that Eq.
�10� accounts for all of the q dependence of the experimental
correlation functions. The stretching parameters 
xy and 
yz,
shown as an inset in Fig. 6, are very close to each other and
very similar to the effective stretching exponent 
 shown in
Fig. 5.

The unconventional q dependence of �eff seen in Fig. 5 is
completely accounted for by Eq. �10�, without having to
abandon the Ornstein-Zernike susceptibility. The effect of
the Ornstein-Zernike susceptibility, which tends to decrease
� �or �xy and �yz� with increasing q, is much weaker than the
q dependence due to the mixing of correlation functions in
Eq. �10�, which tends to increase the effective relaxation
time �eff with q. For our system and choice of experimental
scattering angles, the Ornstein-Zernike correction to the sus-

ceptibility will change the relaxation time by at most 20%
for the lowest temperature, where �xy is over twice larger
than �yz �see Fig. 7�. The fact that �xy and �yz differ by a
factor of 2 and are not separated by an order of magnitude
explains why the single stretched exponential fit provides a
good approximation to the correlation function Eq. �10�.
While the effects of the q dependences from the mixing and
the susceptibility tend to counteract each other, the effect
from the mixing overpowers the effect from the Ornstein-
Zernike correction in the susceptibility, resulting in the over-
all increase in �eff with q.

Equation �10� is consistent with a theory which incorpo-
rates a linear coupling between local-anisotropy fluctuations
and velocity fluctuations. Systems composed of anisotropic
components are known to exhibit a birefringence under
steady shear. The same physics in the isotropic phase of liq-
uid crystals is manifested through a coupling between veloc-
ity fluctuations and molecular orientations �14�. This cou-
pling affects the relaxation of the local-anisotropy
fluctuations in such a way that the dynamic correlations of
the local anisotropy are given by

��Qxy
� �Qxy�t�� = C exp	−

t

�

 , �11�

��Qyz
� �Qyz�t�� = C exp	−

1 + �2

�
t
 , �12�

where � is a dimensionless Onsager coefficient that couples
the local-anisotropy production rate to the velocity fluctua-
tions, and where the amplitude is given by C=kBT� / l0

3.
Equations �11� and �12� imply that ��Qyz

� �Qyz�t�� always re-
laxes with a smaller relaxation time than ��Qxy

� �Qxy�t��. A
brief review of the derivation of Eqs. �11� and �12� is pre-
sented in the Appendix.

FIG. 6. Examples of the normalized dynamic intensity-
autocorrelation functions g2�t�−1 for depolarized light scattering at
33.3 °C obtained at different scattering angles. The theoretical
curves for 15° and 150° are obtained from fits to Eq. �10�. The
curves for the intermediate angles are predictions given by Eq. �10�
without adjustable parameters. The inset shows the temperature de-
pendence of the stretching parameters 
yz and 
xy obtained from the
fits to Eq. �10� at 15° and 150°.

FIG. 7. The temperature dependence of the decay time of the
anisotropy fluctuations � / �1+�2� coupled with velocity fluctuations
for the depolarized light scattering at �=15° �solid circles�, the
decay time � obtained for the depolarized scattering at �=150°
�open circles�, and the decay time � obtained for the polarized light
scattering at �=15° �solid diamonds�. The upper curve is � obtained
from a fit to Eq. �13� and the lower curve is � / �1+�2� obtained
assuming a constant �. The coupling parameter �2 as a function of
temperature is shown in the inset.
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In arriving at Eqs. �11� and �12�, we have assumed that
the velocity fluctuations relax much faster than the local-
anisotropy fluctuations. Typical anisotropy relaxation times
in the system are on the order of 10−1–10−2 ms �see Fig. 5�.
The relaxation time for the velocity fluctuations is character-
ized by the q-dependent shear relaxation time, 1 /�q2

�10−4–10−8 ms �where � is the kinematic viscosity�. The
upper bound of this range corresponds to the viscosity of the
solvent and the scattering angle �=15°. Even at the extreme
values of the relaxation times for our experimental condi-
tions, the inequality 1 /�q2
� holds.

It is not clear whether the stretched exponential decay in
the system is due to nonlinear interactions between hydrody-
namic modes or polydispersity in aggregate lengths, and
therefore relaxation times. In other systems, polymers solu-
tions near-critical demixing �24,34� for example, where
stretched exponential decays are experimentally observed,
the authors have found good agreement between theory and
experiment simply by adding the stretching parameter to the
theoretical single exponentials. Therefore, we will assume
that, in Eq. �10�, the obtained relaxation times �xy �� and the
�yz�� / �1+�2�. The validity of these assumption is justified
by comparison with the experimental data.

The temperature dependences of �, � / �1+�2�, and �2 are
presented in Fig. 7. The open circles correspond to � and the
solid circles correspond to � / �1+�2�. The solid diamonds
represent the orientational relaxation time obtained in the
polarized scattering; they will be addressed in Sec. V. The
values for �2 were found by taking the ratio of the experi-
mentally measured decay times � and � / �1+�2�. The tem-
perature dependence of the “uncoupled” relaxation time � is
in good agreement with the well-known prediction for the
pretransitional relaxation of anisotropy fluctuations in liquid
crystals �14,17,18� given by Eq. �2�. To account for the de-
viation of the temperature dependence of the susceptibility
from the asymptotic Landau–de Gennes behavior given by
Eqs. �6� and �3�, we express Eq. �2� as

� = �� �
�l0

3

kB�TNI − T��
I�T�

I�TNI�
, �13�

where � is the pretransitional nematic susceptibility, T�

�303 K �as obtained from the static light scattering�, I�T� is
the experimental VH intensity, TNI is the transition tempera-
ture at which the experimental VH intensities are normalized
to 1, and l0�6.4 nm is the characteristic length of the an-
isotropic aggregates as defined by Eq. �6�. The viscosity data
are taken from Ref. �1�, where the shear viscosity is approxi-
mated by the Vogel-Fulcher equation,

� = �0 exp	 B

T − T0

 , �14�

with the fitting parameters �0=0.0136 mPa s, B=130 K,
and T0=286 K �the temperature of the apparent divergence
of the viscosity�.

B. Polarized light scattering

With our assessment of the dynamics of the orientational
fluctuations obtained in the VH alignment, the rather com-

plicated dynamics picture seen for the VV alignment is easier
to interpret. Using the standard regularization procedure for
inverse Laplace transforms �see Ref. �24� for details�, we
have calculated the decay-time distributions H��� from the
VV correlation functions. The decay-time distributions
model the relaxation process as a superposition of exponen-
tials such that g2�t�−1= ��H���e−t/�d��2. The distributions
obtained for a sequence of temperatures are combined in a
single plot, in which the distribution maxima at different
temperatures join to form “ridges.” The distribution plots are
useful because they are able to locate the dominant dynamic
modes in the system without reference to a specific relax-
ation model. An example of a decay-time distribution, ob-
tained in the VV alignment for the scattering angle 30°, is
shown as a contour map in Fig. 8. The contour lines join
decay times of equal distribution magnitude at different tem-
peratures.

At all eleven scattering angles studied, we have observed
a single pronounced ridge in the decay-time distributions
above 45 °C. The relaxation time associated with this ridge
is only weakly temperature dependent. We interpret this
ridge as corresponding to the �fast� diffusion of cromolyn-
monomer size particles in water. For temperatures below
45 °C, a second pronounced ridge is observed to emerge
from the fast-diffusion ridge. The relaxation time associated
with this mode decreases rapidly over a temperature interval
of several degrees and then saturates. We interpret this ridge
as corresponding to the diffusion of cromolyn aggregates. A
third dynamic mode appears just below 45 °C. This mode is
broader than either of the two diffusion modes, especially at
higher temperatures. The relaxation times associated with
this mode are initially much smaller than the diffusion times.
As the transition temperature is approached, the relaxation

FIG. 8. Decay time distributions for the VV alignment of light
scattering in the isotropic phase of the cromolyn solution at �
=30° over the broad temperature interval. The contour lines join
decay times of equal distribution magnitude. The symbols represent
the results obtained by the fits to Eqs. �15� and �16� above 45 °C
and between 40 and 45 °C, respectively. Diamonds are used for the
fast-diffusion time and triangles are used for the slow-diffusion
time. Below 40°, the slow-diffusion time �circles� is obtained from
fits to a single exponential in the time domain above 0.1 ms. The
emergence of the slow-diffusion mode at about 45 °C is attributed
to the onset of cromolyn aggregation.
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time of this third mode slows down significantly, eventually
becoming comparable to both of the diffusion times. We in-
terpret this third mode as corresponding to the relaxation of
fluctuations of the local anisotropy.

The preceding interpretation is supported by a direct
analysis of the dynamic autocorrelation functions. Examples
of the correlation functions at 49 °C are shown in Fig. 9. At
temperatures above 46 °C, the correlation functions are well
described by a single exponential,

g2�t� − 1 = �A1 exp	−
t

�D1


�2

, �15�

where A1 is the amplitude. If a stretched exponential is used,
the stretching parameters are found to be close to one. Below
the onset of aggregation the slow-diffusion mode emerges.
Examples of the VV correlation functions at 30°, for several
temperatures between 46 and 36 °C, are shown in Fig. 10. In
the interval from 46 to 45 °C there is qualitative evidence
for the existence of two diffusion modes, but the diffusion
times are too close to allow for a stable fit to two exponen-

tials. However, between 45 and 40 °C, a good fit to two
exponentials as

g2�t� − 1 = �A1 exp�− 	 t

�D1


� + A2 exp�− 	 t

�D2


��2

�16�

is obtained. In Eq. �16� A1 and A2 are amplitudes for the fast-
and slow-diffusion modes, respectively. The two-exponential
decay signals the emergence of the slow-diffusion mode. Be-
low 45 °C, a contribution to the correlation functions from
the orientational mode is also present. However, between 45
and 40 °C, the orientational mode is faster and much weaker
than the diffusion modes, so that our fit to only two expo-
nentials is a reasonable approximation. The diffusion times,
obtained from the two-exponential fits and plotted along with
the distribution of decay times in Fig. 8, are in agreement
with the positions of the maxima. The temperature depen-
dences of the amplitudes A1 and A2 are presented in Fig. 11,
where the crossover from monomer-size molecular scattering
above 45 °C to mainly aggregate scattering below 45 °C is
evident.

Below T�40 °C, it is no longer possible to resolve the
contribution of the fast-diffusion mode, while the influence
of the growing orientation mode begins to be significant. At
T=41.7 °C, this effect is first seen in Fig. 10 as a slight kink
in the correlation function away from single exponential de-
cay, shown by the dashed curve, for small times. Upon fur-
ther cooling the relative amplitude of the orientation mode
continues to increase and the orientational relaxation time
continues to grow. For the temperatures below 40 °C we
have fit the experimental correlation functions to the sum of
a single exponential and a stretched exponential,

g2�t� − 1 = �A1 exp�− 	 t

�D1


� + A3 exp�− 	 t

�

��2

,

�17�

where A3 is the amplitude of the orientational mode. It is
seen from Fig. 10 that for times greater than t�0.03 ms the

FIG. 9. Dynamic intensity-autocorrelation functions for the VV
alignment at 49 °C for different scattering angles. The curves are
obtained from the fits to single exponentials.

FIG. 10. Examples of dynamic intensity-autocorrelation func-
tions for the VV alignment at �=30°. The initial amplitude of the
correlation functions is given by the static intensity correlation
function. The curves are obtained from the fits to Eqs. �15� at
46.4 °C, �16� at 41.7 °C, and �17� at 39.7, 37.9, and 36.5 °C. The
dashed curve is the fit to the single exponential slow diffusion.

FIG. 11. The normalized amplitudes from the fits to Eq. �16� at
�=30° VV. The amplitude A1 corresponds to the fast-diffusion
mode, and the amplitude A2 corresponds to the slow-diffusion
mode. At the end of the aggregation process the slow diffusion has
become the dominate mode at the expense of the fast-diffusion
mode.
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correlation functions collapse onto each other, indicating that
the main contribution to the correlation functions in this time
domain is the saturated slow-diffusion mode. For times less
than t�0.03 ms, the orientational mode is the dominant
contribution to the correlation functions.

1. Diffusion modes in the polarized light scattering

The decay rates of the aggregate and monomer diffusion
differ from each other by one order of magnitude. Both of
the diffusion relaxation times are found to be consistent with
Eq. �5�. The diffusion coefficients for the fast �monomer
size� mode �D1� and slow �aggregates� mode �D2� are ob-
tained from the slopes of 1 /�D1,2

versus q2 plots as shown in
Fig. 12. The points on these plots are taken from both the
distribution analysis and the multiexponential fits. For the
fast-diffusion time �Fig. 12�a��, the filled circles represent the
average diffusion times taken from the single exponential fits
above 45 °C. In Fig. 12�b�, the closed circles represent slow-
diffusion times taken from fits of the correlation functions to
the two-exponential decay given by Eq. �16�. The open
circles in Figs. 12�a� and 12�b� are taken from the decay-time
distributions below 45 °C.

The diffusion coefficient for each diffusion mode was ap-
proximated with the Stokes-Einstein expression as �21�

D1,2 �
kBT

6��sR1,2
, �18�

where �s is the solvent �water� viscosity, and R1�0.5 nm
and R2�6.3 nm are the effective hydrodynamic radii. It is
remarkable that the value of R2 is so close to the length l0
�6.4 nm obtained from our fit of the orientational relax-
ation � to Eq. �13�, while R1 is on the order of the cromolyn-
monomer radius. The lengths R1,2 give only order-of-
magnitude estimates of the characteristic size of the
cromolyn aggregates since the diffusion of nonspherical ag-
gregates cannot be quantitatively described by the Stokes-
Einstein expression. A more sophisticated expression for the
diffusion coefficient �e.g., see the discussion in �35�� is not
necessary to distinguish changes in the size of the aggre-
gates.

It is clear from Eq. �18� that the sharp slowing down of
the aggregate diffusion mode seen in Fig. 8, corresponds to
the elongation of rodlike aggregates within a narrow tem-
perature interval of a few degrees below 45 °C. This elon-
gation virtually saturates below this interval. Both diffusion
modes depend weakly on temperature, after the slow-
diffusion mode has saturated, suggesting that the length of
the aggregates does not significantly change upon cooling
and that the diffusion of the monomers and aggregates is
mainly affected by the solvent viscosity. Therefore, the
anomalous growth of the solution viscosity reported in �1�,
cannot be explained by the elongation of the cromolyn ag-
gregates.

2. Orientational relaxation mode in the polarized light scattering

The wave-number dependence of the orientational mode
in the VV alignment is more difficult to resolve than that of
the diffusion modes. For most experimental angles the orien-
tational relaxation time is comparable to the slow-diffusion
time near the transition. This problem is particularly exacer-
bated at large scattering angles, when the q-dependent diffu-
sion modes overlap the orientational mode for a broad range
of temperatures. Only at �=15° are the time scales for the
orientational mode and the slow-diffusion mode different
enough to separate them unambiguously at all temperatures
below 37 °C. Two examples of experimental correlation
functions at 15° are shown in Fig. 13. For T=36.8 °C the
contribution to the experimental correlation function from
two distinct decay processes is clearly evident. At T
=33 °C, the contribution from the diffusion mode has been
overwhelmed by the orientational mode. We have fit the ex-
perimental correlation functions at 15° to a combination of a
single exponential and a stretched exponential given by Eq.
�17� where A2 and A3 are normalized amplitudes. The
stretching parameters, which are found to be very similar to
those seen in the VH alignment, are plotted as an inset in Fig.
13. The amplitudes A2 and A3 are plotted in Fig. 14. Clearly,
the orientation mode becomes much stronger than the diffu-
sion mode at lower temperatures.

V. DISCUSSION

As recently discussed by Tomasik and Collings �6�, there
are two alternative mechanisms of aggregation phenomena in

FIG. 12. Wave-number dependence of the diffusion rates for fast
diffusion �a� and slow diffusion �b�. Open circles are obtained from
the maxima of the decay-time distributions. Solid circles are the
results of the fits to single exponentials. Solid lines indicate the
approximation given by Eq. �5�.

FIG. 13. Two examples of dynamic intensity-autocorrelation
functions for the VV alignment at �=15°. The solid curves in the
figure were obtained from fits to Eq. �17�. The inset shows the
stretching parameters obtained from these fits.
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lyotropic liquid crystals. One is micellization, through which
amphiphilic molecules form micelles above the “critical mi-
cellization concentration” or below the “critical micellization
temperature.” A further increase in amphiphilic concentration
or a decrease in the temperature results in an increase in the
number of micelles, while their size may remain relatively
stable. Cromolyn solutions are assumed to belong to another
type of lyotropic liquid crystal in which the solute molecules
are disklike and only weakly amphiphilic. In water, the cro-
molyn molecules may tend to aggregate into stacks through
“isodesmic aggregation.” As the concentration increases, the
distribution of aggregates shifts to higher aggregation num-
bers and the aggregates are elongated �6,7� at the expense of
the cromolyn monomers. One might assume a similar pro-
cess occurred in our system upon cooling with no distinct
“aggregation temperature.” However, our experiments, both
static and dynamic, show that there is a relatively sharp ag-
gregation threshold at about 45 °C �for 14% solution� indi-
cating that in the cromolyn solution the isodesmic aggrega-
tion phenomena may occur in a very narrow temperature
interval of about 3–4 °C. Moreover, we do not find any
evidence of significant elongation of the aggregates outside
of this temperature interval. A microscopic model that de-
scribes such a sharp isodesmic aggregation in a narrow tem-
perature interval is yet to be developed.

The pretransitional slowing down in the cromolyn solu-
tion, observed in the depolarized light scattering �VH�,
strongly depends on the light-scattering wave number q. The
relaxation time increases with an increase of q. We interpret
this effect as resulting from coupling between the fluctua-
tions of local-anisotropy and velocity fluctuations. While, in
general, for systems of anisotropic scatterers, such a coupling
is expected, the strength and consequences vary. This cou-
pling was intensively studied for systems of anisotropic mol-
ecules, like anisaldehyde, in the “fast reorientation” limit
1 /�q2�� �29�. The theory of the velocity-anisotropy cou-
pling has also been developed in the “slow reorientation”
limit, 1 /�q2
� �14�. As previously mentioned, the slow re-
orientation limit applies to the cromolyn solution because the
orientational relaxation becomes increasingly slow as the
isotropic-nematic transition is approached.

We have thus far used the Onsager cross-coupling coeffi-
cient � to characterize the velocity-anisotropy coupling.

However, the velocity-anisotropy coupling is often, in the
literature, characterized by a parameter R �29�, which is re-
lated to � by R=�2 / �1+�2�. While � can vary from 0 to �,
R varies between 0 and 1. Two theories for R have been
developed using molecular hydrodynamics for slip boundary
conditions and stick boundary conditions. For the stick
boundary conditions R depends on the geometric �shape� an-
isotropy of the molecules as R	�2 / �2+��2, where � is the
shape anisotropy of the particles �36�. In contrast, for slip
boundary conditions, R is independent of shape anisotropy
�37�. Using our experimental values for � we find that our R
values range is R�0.45–0.65. These values are generally
larger than those found in systems with small anisotropy, but
smaller than those reported for a semiflexible polymer
�38,39�, R�0.8.

The orientational relaxation time found for �=15° in the
polarized light-scattering alignment is plotted together with
the relaxation times obtained with the depolarized scattering
in Fig. 7. The relaxation times for �=15° in the polarized
scattering are much closer to the relaxation times �almost
uncoupled� seen at �=150° in the depolarized scattering than
to the relaxation times �coupled� at �=15° in the depolarized
scattering. This finding is consistent with our interpretation
of the correlation functions in the depolarized scattering
alignment and the corresponding theory of coupling between
the fluctuations of local anisotropy and velocity. In the VV
geometry, light scattering only probes fluctuations in the Qyy
component of the local anisotropy �29�. Unlike the compo-
nents probed in the VH geometry, �Qyy does not couple to
velocity fluctuations. Therefore, the orientational mode seen
in the VV geometry should correspond to the uncoupled
mode with the characteristic relaxation time given by Eq.
�13�. At lower temperatures, the relaxation time � obtained at
�=15° for polarized scattering is slightly larger than � ob-
tained at �=150° for depolarized light scattering. This effect
is qualitatively consistent with the Ornstein-Zernike correc-
tion to the susceptibility, however, an additional q depen-
dence of the susceptibility associated with the existence of
two correlation lengths �1 and �2 �20�, as discussed in the
Appendix, could also contribute to this difference.

As compared with the viscosity of the solvent �water�, the
viscosity of the cromolyn solution demonstrates an anoma-
lous growth upon approaching the transition temperature TNI.
Such an anomaly does not usually exist in the isotropic phase
of thermotropic nematics �17�. The Vogel-Fulcher equation
�see Eq. �14�� is a generalization of the standard Arrhenius
equation �in which T0=0� and is commonly applied to liq-
uids exhibiting a glass transition �40�. Interestingly, a glass-
like character of molecular ordering was also found in an-
other solutions of disklike lyomesogens �28�. However, a
coupling between the orientational fluctuations and velocity
fluctuations, and consequently a q-dependent VH dynamic
mode, was not observed in Ref. �28�, probably because the
pretransitional slowing down was not present in the system.
The fact, that the average length of the cromolyn aggregates
below 40 °C does not significantly change, reaching 6–7
nm, and the fact that the temperature dependence of transla-
tional diffusion coefficient is controlled by the solvent �wa-
ter� viscosity, suggests that the anomalous growth of the
shear viscosity in the cromolyn solution is not caused by the

FIG. 14. The normalized amplitudes from the fits to Eq. �17� at
�=15° VV. The amplitude A2 corresponds to the slow-diffusion
mode, and the amplitude A3 corresponds to the orientational mode.
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elongation of cromolyn aggregates and could be related to
the emergence of glasslike behavior upon cooling.

VI. CONCLUSIONS

Using an improved light-scattering technique we have ob-
served several new features of the pretransitional fluctuations
in the isotropic phase of a lyotropic liquid crystal, the cro-
molyn solution previously studied by Nastishin et al. �1�. We
have detected the onset of cromolyn aggregation induced by
decreasing temperature by both static and dynamic light scat-
tering. This new result favors an interpretation in which the
isodesmic aggregation �continuous stacking� of cromolyn
molecules into aggregates with a characteristic length of 6–7
nm only develops over a narrow temperature interval of a
few degrees and saturates below this interval. By separating
contributions from the fluctuations of concentration and local
anisotropy, multiscale dynamics of the fluctuations have been
observed in the polarized and depolarized light scattering.
The results from the polarized light scattering �VV� indicate
that in addition to the previously reported slow-diffusion
mode, interpreted as the diffusion of the cromolyn aggre-
gates, there is a fast-diffusion mode corresponding to the
diffusion of the cromolyn monomers. Both diffusion modes
are controlled by the viscosity of the solvent �water� which is
much smaller than the actual viscosity of the solution near
the transition temperature. In the depolarized light scattering
�VH� we have observed a strong, q-dependent mode associ-
ated with the relaxation of the local-anisotropy fluctuations.
The q dependence of this mode is quantitatively described by
a coupling between fluctuations of the local-anisotropy and
velocity fluctuations. In the polarized light scattering �VV�
the relaxation of the local-anisotropy fluctuations is un-
coupled since in this geometry the light scattering only
probes fluctuations in the uncoupled component of the local-
anisotropy tensor, which is in agreement with the existing
theory �29�.
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APPENDIX: THE CORRELATION FUNCTION OF
COUPLED LOCAL-ANISOTROPY FLUCTUATIONS

de Gennes and Prost have presented a hydrodynamic
theory that describes the effect of local velocity-anisotropy
coupling on the dynamics of pretransitional fluctuations in
the isotropic phase of liquid crystals �14,43�. A similar but
more rigorous derivation can be made with “fluctuating hy-
drodynamics” �41,42�. The main results of this derivation,
Eqs. �A7� and �A8�, are identical to those found by other
authors using different methods �29�.

In the context of fluctuating hydrodynamics, the deriva-
tion of the dynamic autocorrelation functions ��Qxy

� �Qxy�t��
and ��Qyz

� �Qyz�t�� begins with balance laws expressing the
nonconservation of the local anisotropy and the conservation
of the local momentum density,

���Qij�
�t

= �ij ,

�
���vi�

�t
= − � j�ij , �A1�

where �Qij and �vij are equilibrium fluctuations of the local
anisotropy and velocity, �ij and �ij are the local-anisotropy
production rate and the momentum density flux, and � is the
mass density of the solution. The preceding equations are
linearized in both �Qij and �vi since we are only interested in
fluctuations around the equilibrium state defined by Qij =0
and vi=0.

In order to close the above system of equations, it is nec-
essary to introduce a set of linearized phenomenological re-
lationships between the fluctuating forces and the fluxes
given by

�ij = −
1

�̃�0

�Q̃ij +
�2�

2
��i�v j + � j�vi� + ��ij ,

�ij = −
�2�

�0
�Q̃ij − ���i�v j + � j�vi� + ��ij , �A2�

where ��ij and ��ij are the fluctuating part of the local-
anisotropy production rate and the fluctuating part of the
momentum density flux, � is the solution viscosity, �0 is the
susceptibility �Eq. �6��, �̃ is the “rotational viscosity” that
determines the orientational decay time, and � is the cross-

coupling Onsager coefficient. We have defined �Q̃ij 
��Qij
−�1

2�2�Qij −�2
2� j�k�Qki� for simplicity. The fluctuating force

conjugate to the local-anisotropy production rate is found by
taking a functional derivative of the standard Landau–de

Gennes free energy ��F /�Qij�=−�0
−1�Q̃ij, and linearizing the

resulting expression. The Landau–de Gennes free energy
�14� is given by

F =� d3x
1

2
�0

−1�QijQji + �1
2�iQjk�iQjk + �2

2� jQjk�iQik� + ¯ ,

�A3�

where we have omitted higher order terms that do not con-
tribute in the linear theory. Since the contributions from the
two different correlation lengths �1 and �2 cannot be experi-
mentally distinguished in a conventional light-scattering ex-
periment �20�, we instead use an effective correlation length

�, i.e., �Q̃ij ��1−�2�2��Qij. The coefficient of the second
term in the expression for �ij is necessarily positive since Qij
and vi have opposite signatures under time reversal. We have
ignored fluctuations in the local pressure because we are not
interested in propagating modes �sound� in the solution. Ad-
ditionally, to ensure that Qij remains traceless, we only con-
sider incompressible flow, i.e., �ivi=0. If the cross-coupling

MULTISCALE DYNAMICS OF PRETRANSITIONAL… PHYSICAL REVIEW E 79, 041704 �2009�

041704-11



coefficient � is set to zero, Eq. �A2� leads to Eq. �1� and the
linearized Navier-Stokes equation.

Inserting the phenomenological relations �Eq. �A2�� into
the balance laws �Eq. �A1��, and taking a spatial Fourier
transform �−�

� exp�iq ·x�d3x, we obtain the resulting hydrody-
namic equations,

���Qxy�
�t

= −
1

�
�Qxy + ��xy , �A4�

���Qyz�
�t

= −
1

�
�Qyz + iq

�2�

2
�vy + ��yz, �A5�

���vy�
�t

= iq
�2�

��
�Qyz − �q2�vy + q��yz/� , �A6�

where �=� /� is the kinematic viscosity. Arriving at the
above equations, we have used the fact that q=−qẑ for our
choice of scattering geometry. Since q points in the negative
z direction, only gradients in the z direction survive the Fou-
rier transform. Hence, only the coupling between �Qyz and
�vy is relevant to the derivation of the autocorrelation func-
tions, since �vx and �vz no longer couple to either �Qyz or
�Qxy in the transformed Eqs. �A4�–�A6�.

The full autocorrelation functions are found by taking a
Laplace transform in time �0

�exp�−st�dt of Eqs. �A4�–�A6�,
where s is a frequency variable, solving the resulting set of
algebraic equations, and taking an ensemble average of the

product �Qij
� �q ,0��Qij�q ,s�. With the aid of the fluctuation

dissipation theorem ���Qij�q ,0��2�=kBT� / l0
3
C �19�, the

preceding steps yield

��Qyz
� �q,0��Qyz�q,s�� = C

s + �q2

�s + 1/���s + �q2� + �2q2/��
,

�A7�

��Qxy
� �q,0��Qxy�q,s�� = C

1

s + 1/�
. �A8�

The above equations make the standard assumptions that
there are no cross correlations between the initial configura-
tions of the dynamic variables and the fluctuating forces.

As discussed in the body of the text, 1 /�q2
� for all
experimental values of q and temperature. Consequently we
only need to consider the approximate roots of the denomi-
nator �s+1 /���s+�q2�+�2q2 /�� in Eq. �A8� to leading order
in the small quantity 1 /��q2. With the previously discussed
approximation �� �̃, this leads to the final expression for the
�Qyz autocorrelation function,

��Qyz
� �q,0��Qyz�q,s�� � C

1

s + �1 + �2�/�
. �A9�

Finally, the experimentally defined correlation functions
given by Eq. �10� can be recovered by taking the inverse
Laplace transform of Eqs. �A8� and �A9�.
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